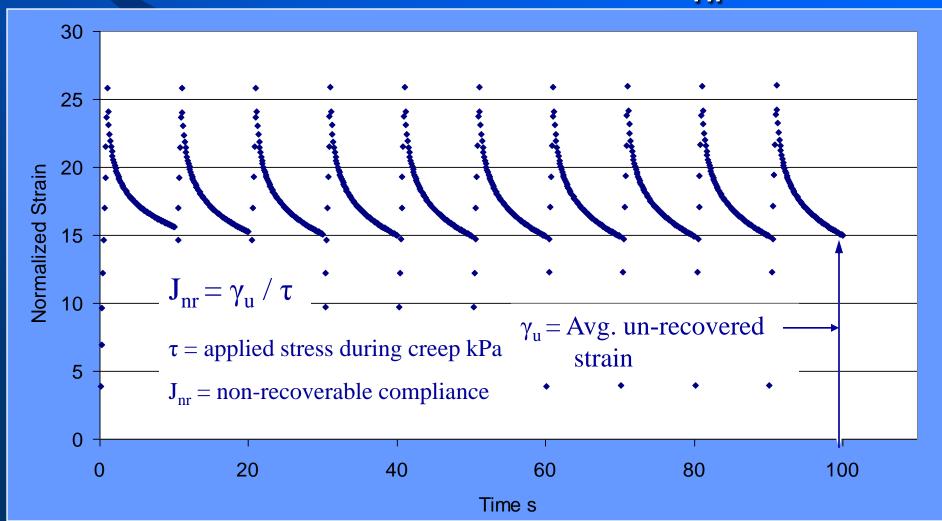
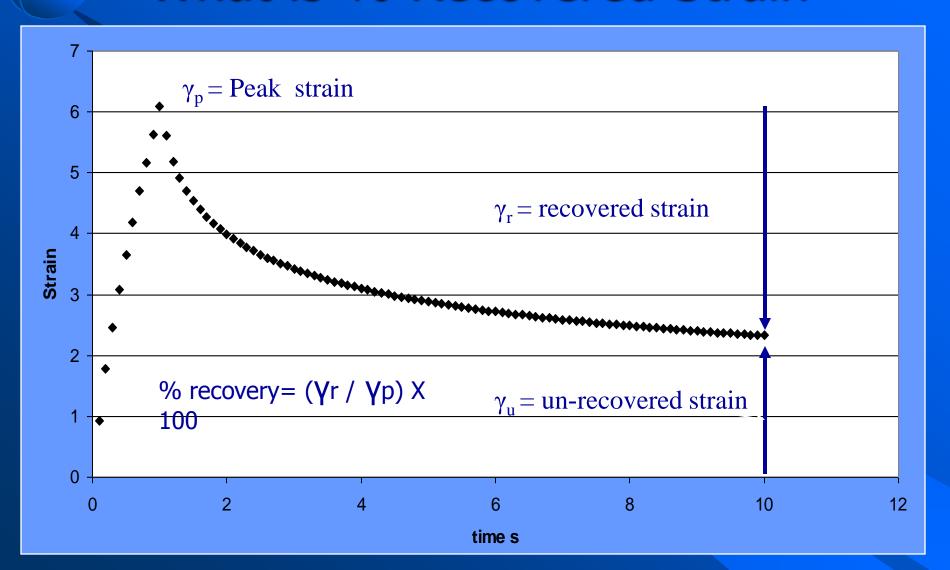
PPA and Binder Modification

John D'Angelo
Office of Pavement Technology


What is the Effect of PPA on binder properties?

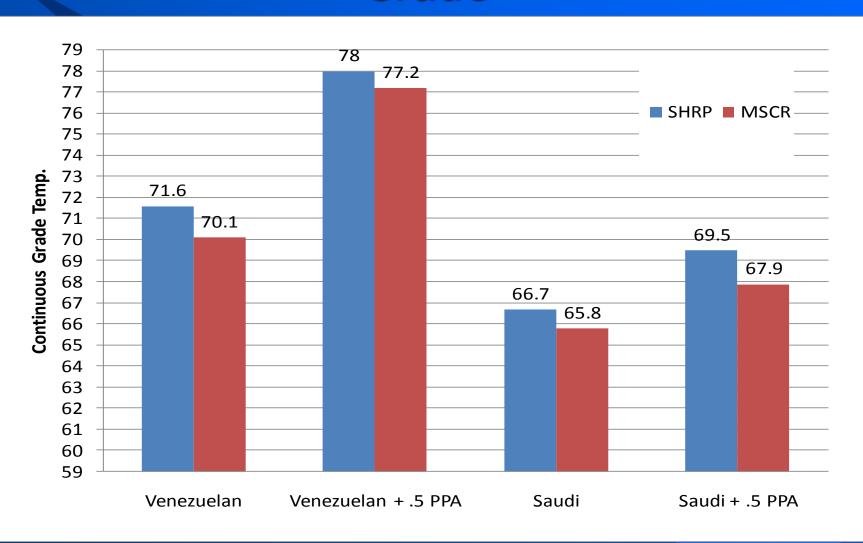
- How does PPA react with polymers?
- What is the affect of different crude sources?
- How does Hydrated Lime affect the interaction of the PPA and binder and polymer modification?


Evaluation Procedure

- AASHTO M320 Table 1
- AASHTO M320 Table 3
 - New High Temperature Grading System using MSCR
- % Recovery MSCR Test
- Elastic Recovery Test

AASHTO M320 Table 3 Determination of J_{nr}

What is % Recovered Strain



Effect of PPA on High Temp Binder Grade

- Two Crude Sources
 - Venezuelan and Saudi Light

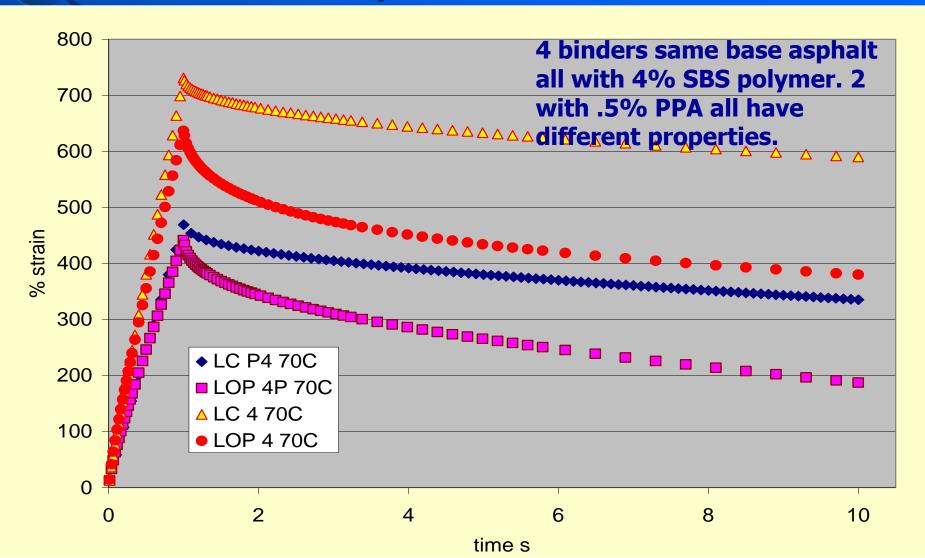
 One Level of PPA addition 0.5% by wt of Binder

Effect of PPA on High Temp Binder Grade

Effect of PPA on High Temp Binder Grade

- PPA Effected Different Crude Sources Differently.
 - .5% PPA Increased the grade temp of the Venezuelan 7°C for both the Table 1 and 3.
 - .5% PPA Increased the grade temp of the Saudi Light 2 to 3°C for both the Table 1 and 3.

Effect of PPA on Blending of binders and polymers


- PG 64-22 Saudi Light Base asphalt
- 4 % SBS polymer
 - Radial
 - Linear
- 0.5% PPA
- 2 blending temperatures

PPA Effects High temp and polymer network, MSCR more distinguishing

Sampl e	Continuous			Temp J _{nr}			% Recovery
ID	Grade	Polymer	Acid	3.2kPa = 1	ER	Temp C	3.2kPa
LC	66.7-24.1		0	56.4	5	64C	0
						70C	19.2
LC 4	75.7-22.3	4% SBS	0	65.1	73.8	76C	5.96
						70C	28.4
LC P4	81.2-22.2	4% SBS	0.50%	69.9	93.8	76C	20.55
		4% SBS				70C	40.3
		from					
LOP 4	76.6-25.2	Concentrate	0	69.1	86	76C	37.02
		4% SBS				70C	52.05
		from					
LOP 4P	81.6-24.5	Concentrate	0.50%	74.1	91.6	76C	42.52

Polymer network effects response and temperature effects.

Fluorescence Micro-graphs at 250 magnification show changes in Morphology

Discreet polymer particles

LC 4

polymer strands developing

LC 4P

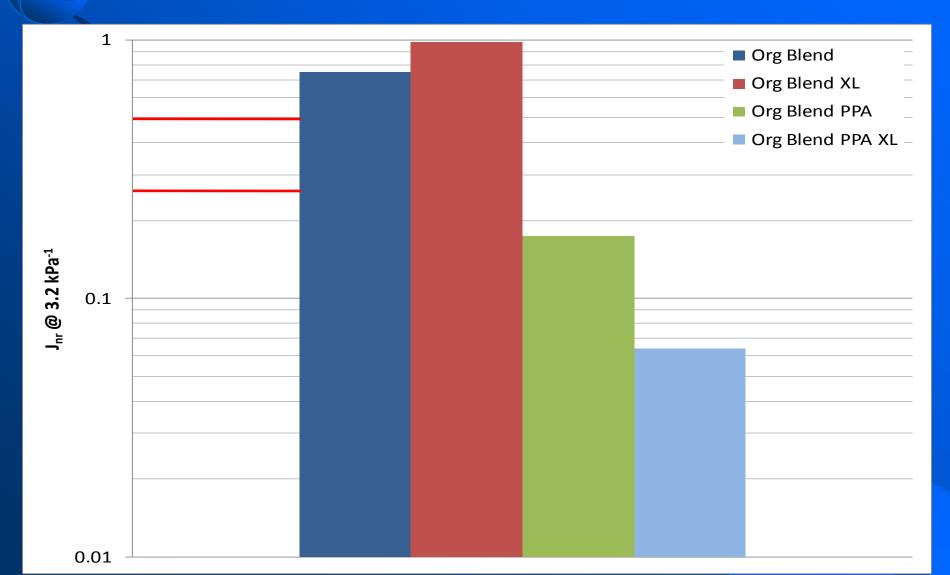
More uniform dispersion some bulking

More uniform dispersion almost cross-linked

LOP 4

LOP 4P

Effect of PPA on Blending of binders and polymers


- PPA improved both the High Temperature Grade and the polymer networking in the binders.
- G*/sinδ indicates a larger improvement than MSCR J_{nr}.
- MSCR % Recovery indicates improved cross-linking with PPA.

Effect of PPA on Binder SBS and Crosslinking

- Venezuelan 58-28 Base
 - Add 3% linear SBS
 - Add .06% Sulfur Cross-linker
 - Add .5% PPA

Change in MSCR with the addition of Cross-linker and PPA @ 64C

Change in MSCR with the addition of Cross-linker and PPA @ 64C

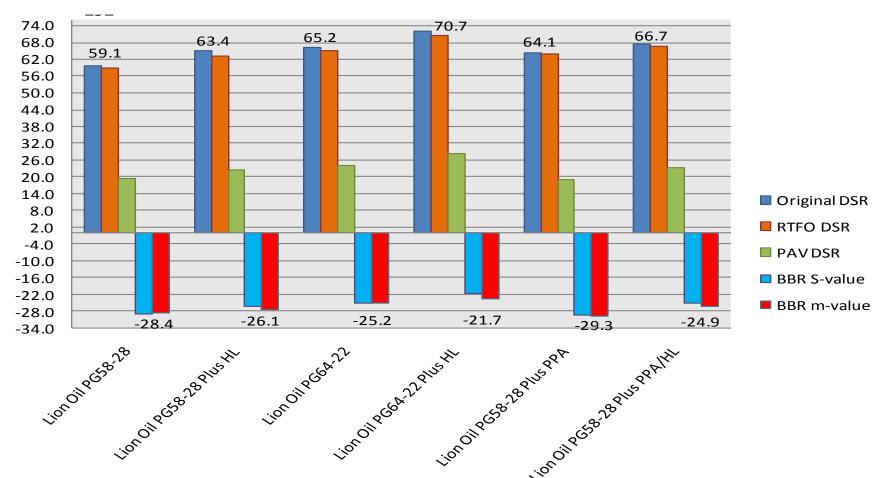
- The addition of 0.5% PPA to the Venezuelan 58-28 & 3% SBS changed the J_{nr} from 0.76 to 0.17 a 2 grade improvement
- The addition of 0.5% PPA to the Crosslinked SBS changed the J_{nr} from 0.99 to 0.06 a 3 grade improvement.

Change in MSCR % Recovery with the addition of Cross-linker and PPA @64C

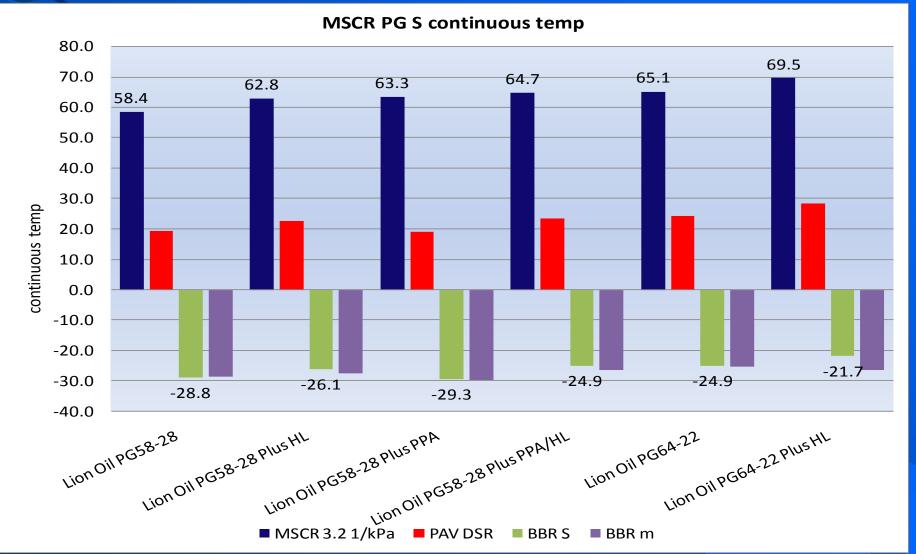
Change in MSCR % Recovery with the addition of Cross-linker and PPA @64C

- The addition of 0.5% PPA to the Venezuelan 58-28 & 3% SBS changed the MSCR % Recovery from 30% to 60%
- The addition of 0.5% PPA to the Venezuelan 58-28 & 3% SBS + cross-linker changed the Changed the % Recovery from 30% to over 80%.
- PPA appears to improve the cross-linking of SBS in the binder.

Effect of Hydrated Lime on PPA Modified Asphalt


- 64-22 Saudi Light blended with flux to produce a 58-28.
 - 1.2 % PPA was added to bring the binder back to a 64-22.
 - 20% Hydrated Lime was added to both the 58-28 and the 64-22.
 - 20% Hydrated Lime was added to the 58-28 +
 1.2% PPA.
- Run complete PG grading and MSCR.

Effect of Hydrated Lime on PPA Modified Asphalt


- All testing was done with Hydrated Lime in the binder.
- Hydrated Lime has all material smaller than 75 microns, much less than the 250 spec T 315
- 20% Hydrated Lime by weight is approximately 7% by volume. Well below volumes that will affect validity of DSR measurements.

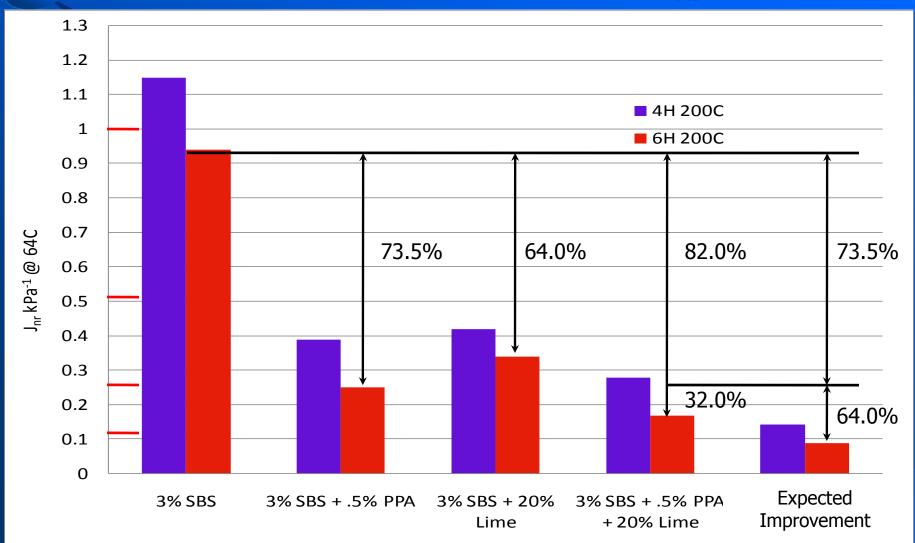
M320 grading for the different bends Effect of Hydrated Lime on PPA

PPA/HL Modified Binders

MSCR PG-S M320 Table 3 grading Effect of Hydrated Lime on PPA

Effect of Hydrated Lime on PPA Modified Asphalt

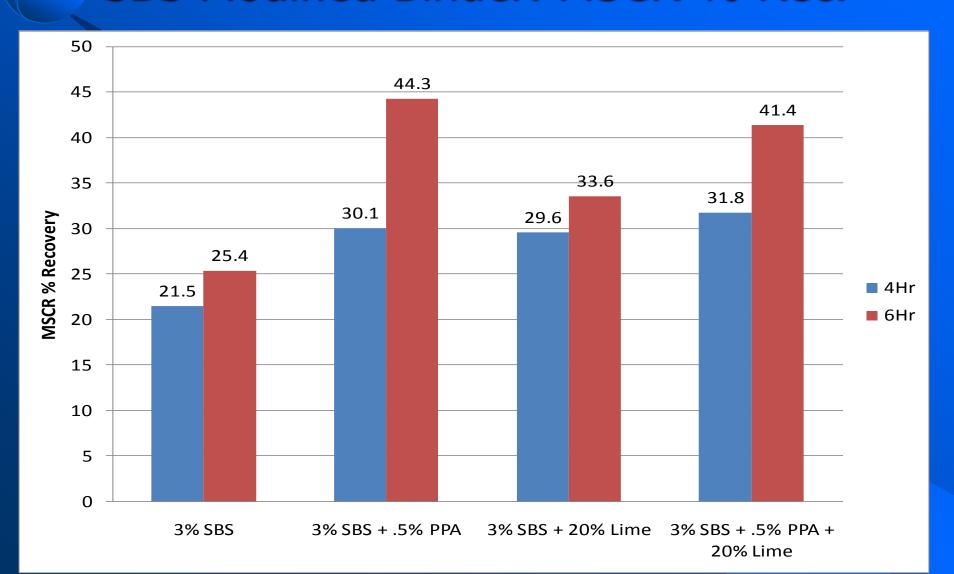
- The addition of 1.2% PPA to the Saudi Light 58-28 increased the high temp grade of the binder by 5°C for both $G^*/\sin\delta$ and J_{nr} .
- The Hydrated Lime increased the high temp. grade of the binder by 4°C in both grading systems.
- If the Hydrated Lime increased the 64-22 by 4°C it should increase the 58-28 with PPA by 4°C also.


Effect of Hydrated Lime on PPA Modified Asphalt

- In this case the Hydrated Lime increased the high temp grade only 2.6°C measured by $G^*/\sin\delta$ and only 1.5°C measured by J_{nr} .
- For the Saudi Light it appears the Hydrated Lime is partially neutralizing the stiffening affect of the PPA.
- It is not a complete reversal by a one half to two thirds reversal based on the measuring system.

Effect of Hydrated Lime on PPA and SBS Modified Binder

- PG 58-28 base asphalt
 - Add 3% SBS
 - Add .5% PPA and 3% SBS
 - Add 20% Hydrated Lime to both the SBS binder and the SBS + PPA binder


Effect of Hydrated Lime on PPA and SBS Modified Binder. MSCR J_{nr} @ 64C

Effect of Hydrated Lime on PPA and SBS Modified Binder. MSCR J_{nr} @ 64C

- .5% PPA added to the Venezuelan and SBS reduced the Jnr from .94 to .25 just at 2 full grades.
- 20% Hydrated Lime added to the Venezuelan and SBS reduced the Jnr from .94 to .34, 1
 ½ grades or a V to an E.
- The PPA and Lime together reduced the Jnr from .94 to .17, 2 ½ grades not the expected 3 ½ grades.

Effect of Hydrated Lime on PPA and SBS Modified Binder. MSCR % Rec.

Effect of Hydrated Lime on PPA and SBS Modified Binder. MSCR % Rec.

- The .5% PPA had a significant effect on the MSCR % Recovery increasing it from 25% to 44%. This is likely due to increased stiffening and improved cross-linking
- The Hydrated Lime also increased the % Rec from 25% to 34%. This is likely due to increased stiffening.
- Together no real increase or decrease is seen over just the PPA. Once the polymer is cross-linked it does not appear the lime reduces the effect.

- PPA does increase the stiffness of asphalt binders in both the old Table 1 and new Table grading system.
 - The extent of the stiffening effect is crude source dependant
 - For high asphaltene Venezuelan .5% PPA will increase the stiffness one full grade.
 - For the lower asphaltene Saudi asphalt 1.2%
 PPA just makes one full grade stiffening.

- PPA improves the properties of SBS modified binders.
 - PPA appears to improve the cross-linking of the SBS in the binder improving % Recovery response and amplifying the stiffening effect of the PPA most likely through the improved cross-linking

- The addition of Hydrated Lime to PPA modified binders appears to reduce some of the stiffening effect of the PPA.
- The amount of reduction in stiffness varied from 30% to 50%.
- The Hydrated Lime does not appear to reduce the % Recovery of the binder.
 Once the cross-linking take effect the addition of Lime does not reduce it.

- PPA can be used to increase the stiffness of asphalt binders and improve crosslinking and elastic response of polymer modified binder.
- Extreme care must be taken when using PPA in a Mix where Hydrated Lime is used as a filler or anti-stripping agent.

Thank You

Questions